

ANNEX E AIR QUALITY

CALIBRATION CERTIFICATES FOR AIR QUALITY

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT : MR MAGNUM FAN WORK ORDER : HK2502558

CLIENT : ENVIROTECH SERVICES CO.

ADDRESS : RM 712, 7/F, MY LOFT 9 HOI WING ROAD, SUB-BATCH : 1

TUEN MUN, N.T. HK

DATE RECEIVED : 15-JAN-2025

DATE OF ISSUE : 21-JAN-2025

PROJECT : ---- NO. OF SAMPLES : 1

CLIENT ORDER :--

General Comments

• Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified. The result(s) is/are related only to the
item(s) tested.

Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition.

Calibration was subcontracted to Envirotech Services Company.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories Position

Richard Fung

Managing Director

: HK2502558 WORK ORDER

SUB-BATCH

: 1 : ENVIROTECH SERVICES CO. CLIENT

PROJECT

ALS Lab	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK2502558-001	Sibata LD-3B (456666)	Equipments	02-Jan-2025	S/N: 456666

----- END OF REPORT -----

 $\mathsf{Page}: 2 \ \mathsf{of} \ 2$

Envirotech Services Co.

Rm. 712, 7/F My Loft, 9 Hoi Wing Roed, Tuen Mun, H.K. Tel: 2560 8450 Fax: 2560 6553

E-mail; envirotech@netvigator.com

Equipment Verification Report (TSP)

Equipment Calibrated:

Type:

Laser Dust Monitor

Manufacturer:

Sibata LD-3B

Serial No.:

456666

Equipment Ref.:

N/A

ALS Job Order:

HK2500343

Standard Equipment

Standard Equipment:

High Volume Sampler (TSP)

Location:

Envirotech Room (Calibration Room)

Equipment Ref.:

HVS 8162

Last Calibration Date:

1-Jan-2025

Equipment Verification Results:

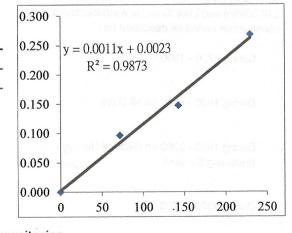
Verification Date:

2-Jan-2025

Hour	Time	Mean Mean Temp°C Pressure		TSP Level in mg (Standard Equipment)	Total Count (Calibrated Equipment)	
	3		(hpa)	(Y-Axis)	(X-Axis)	
1hr 00mins	0900-1000	16.1	1023	0.096	giaeh ta noitata 76 notinom quite?	
2hr 00mins	1005-1205	20.5	1022	0.147	160	
3hr 00mins	1330-1630	21.0	1022	0.268	248	

Linear Regression of Y or X

Slope (K-factor):


0.0011(mg)/Count

Correlation Coefficient (R):

0.9936

Date of Issue:

15-Jan-2025

Remarks:

- 1. Strong Correlation (>0.8)
- 2. Factor 0.0011 mg/Count should be applied for TSP monitoring

Operator:

P.F.Yeung

Signature

Val

Date: 15 Jan 2025

QC Reviewer:

K.F.Ho

Signature

at the

Date: 15 Jan 2025

^{*}If R<0.5, repair or verification is required for the equipment

TSP SAMPLER CALIBRATION CACULATION SPREADSHEET

Location: Rm. 712, My Loft, Tuen Mun HVS ID: 8162				un			Date of Calil		1-Jan-25
					170		Next Calibra	tion Date:	31-Mar-25
Name and Model: TISCH HVS Model TE-						2710	Operator:		K.F.Ho
ann e Metorthologia de l'A nton				CON	DITIC	DIN2		ganetinet/fishem	
Sea Level Pressure (hpa) Temperature (°C)					1023 15.8	ione in	Corrected Pro Temperature	essure (mm Hg) (K)	767.3 288.8
	Province and the second second			CALI	BRA'	TION (ORIFICE	s to xavelen this nam	
			Make: Model: Serial#:	TE-50	SCH)25A 2454		Qstd Slope Qstd Intercep	ot [2.08315 -0.04938
. Sen I			Station :	CALI	BRA'	TION	Los arossor		
Plate	H2O(L)	H20(R)	H2O	Qst	td	I	IC	the his monitori	INEAR
No.	(in)	(in)	(in)	(m3/r	1	(chart)	(corrected)	BEELD VELLEBOAY I BUT	REGRESSION
18	6.4	6.4	12.8	1.77	77	62	63.30	Slope= 3	
13	5.3	5.3	10.6	1.63	19	56	57.17	Intercept= -	
10	4.2	4.2	8.4	1.44	14	48	49.00	Corr. Coeff.= 0	.9959
7	2.7	2.7	5.4	1.16	53	41	41.86		
5	1.7	1.7	3.4	0.92	27	32	32.67	era Dan (masos jur 1.,	(Seed) paul to la
Calulations						. 03	<u>has snakene</u> on broken no no	<mark>l instrumento le cesto d</mark> Secondal Audio mares	
		7° (D°4°4)/(P-4-1/7P-1\ 1-1		IC 70			Flow Rate	
	[Sqrt(H2O(F (Pa/Pstd)(Ts		1 Sta/ 1 a))-b]			E	orem enger son: of alastog prehest	g nose aresequentar - seme identifica mes	
ic – Ilodiu	(1 a/1 stu)(1 s	u/1a)]			65	-			yali Swieyasatap
Ostd = stan	dard flow ra	ite			60	Ē		land made	
	ted chart res				55	-		4 months 3511 3	SELECTION AND DESCRIPTION
	hart respons	_				E			1091 - 0071 oni
	ator Qstd slo				50	=	bos anothered (bolomiest & italia	genolieum quit
= calibra	tor Qstd inte	ercept			45	- mril	tog optista ga		d lood in to be
Ta = actual	temperature	during o	alibration (d	eg K)	40	=	onalyotha Theig	<u> </u>	eh iv day resing i iv iv designation
			ration (mm I		35	7.31		Miles is panchoom	SP) including the
					30	-		Anad Station Apple 175	en Busino stuestus
For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)					-		•	rina 1900 - 2200	
ı/m((1)[Sqri	t(298/Tav)(F	'av//60)]	-b)	18	25		Hocapons and	uelangiaeb is noteta	principada quil
n = sampl	er slope				20	10	<u>POLYEDAD FORS</u> POÚS PEROPUO S	ika ficilisis panalinad dust nocialogistisch	Laég eoro tsubni tasgmi dirik bok
	er intercept				15	<u> </u>	* (927)	epended Semendore	A lost west to
= chart re					10	E	gramita a situte	enco revo faraso sel e edeb è bondo a lot	witos noitoman
						07.00	2 00 10 11	12 12 14 15	1 (17 10

Tav = daily average temperature

Pav = daily average pressure

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Qstd(m3/min)

RECALIBRATION DUE DATE:

December 2, 2025

Certificate of Calibration

Calibration Certification Information

Cal. Date:

December 2, 2024

Rootsmeter S/N: 438320

Ta: 293
Pa: 757.4

°K

Operator: Jim Tisch

mm Hg

Calibration Model #:

TE-5025A

Calibrator S/N: 2454

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4200	3.2	2.00
2	3	4	1	1.0170	6.4	4.00
3	5	6	1	0.9090	7.9	5.00
4	7	8	1	0.8700	8.8	5.50
5	9	10	1	0.7140	12.8	8.00

	Data Tabulation						
Vstd	$ \sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)} $ Qstd			Qa	√∆H(Ta/Pa)		
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)		
1.0093	0.7108	1.4238	0.9958	0.7013	0.8796		
1.0051	0.9883	2.0136	0.9916	0.9750			
1.0031	1.1035	2.2512	0.9896	1.0886	1.3907		
1.0018	1.1515	2.3611	0.9884	1.1361	1.4586		
0.9965	1.3956	2.8476	0.9831	1.3769			
	m=	2.08315		m=	1.30443		
QSTD	b=	-0.04938	QA	b=	-0.03050		
2010	r=	0.99985		r=	0.99985		

	Calculatio	ns	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd= Vstd/ΔTime		Qa= Va/ΔTime	
	For subsequent flow ra	te calculatio	ns:
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrate	or manometer reading (in H2O)
ΔP: rootsme	ter manometer reading (mm Hg)
Ta: actual ab	solute temperature (°K)
Pa: actual ba	rometric pressure (mm Hg)
b: intercept	
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.com

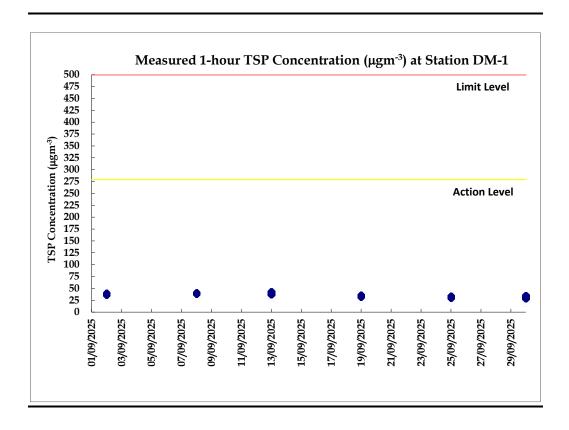
TOLL FREE: (877)263-7610 FAX: (513)467-9009

MONITORING SCHEDULE FOR AIR QUALITY

Tung Chung New Town Extension (East)

			` ,	
Air Quality	/ Monitoring	Schedule (September 2025)	

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturdav
	1-Sep		3-Sep			
		Air Quality Monitoring				
7-Sep	8-Sep	9-Sep	10-Sep	11-Sep	12-Sep	13-Sep
	Air Quality Monitoring					Air Quality Monitoring
14-Sep	15-Sep	16-Sep	17-Sep	18-Sep	19-Sep	20-Sep
					Air Quality Monitoring	
21-Sep	22-Sep	23-Sep	24-Sep	25-Sep	26-Sep	27-Sep
				Air Quality Monitoring		
28-Sep	29-Sep	30-Sep				
		Air Quality Monitoring				



MONITORING RESULTS FOR AIR QUALITY

Table E3 Data for 1-hr TSP Monitoring at Station DM-1

Date	Start Time	Finish Time	Weather	1-hour TSP (μg/m³)
2/9/2025	14:02	15:02	Sunny	40
2/9/2025	15:02	16:02	Sunny	37
2/9/2025	16:02	17:02	Sunny	36
8/9/2025	14:30	15:30	Cloudy	39
8/9/2025	15:30	16:30	Cloudy	41
8/9/2025	16:30	17:30	Cloudy	38
13/9/2025	9:01	10:01	Sunny	38
13/9/2025	10:01	11:01	Sunny	37
13/9/2025	11:01	12:01	Sunny	43
19/9/2025	9:03	10:03	Cloudy	32
19/9/2025	10:03	11:03	Cloudy	35
19/9/2025	11:03	12:03	Cloudy	36
25/9/2025	14:20	15:20	Cloudy	34
25/9/2025	15:20	16:20	Cloudy	30
25/9/2025	16:20	17:20	Cloudy	33
30/9/2025	14:00	15:00	Sunny	29
30/9/2025	15:00	16:00	Sunny	31
30/9/2025	16:00	17:00	Sunny	35

Figure E3 Graphical Presentation for 1-hr TSP Monitoring at Station DM-1

EVENT AND ACTION PLAN FOR AIR QUALITY

Annex E4 Event and Action Plan for Air Quality

Event	Action						
Event	ET	IEC	ER	Contractor			
Action level exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate. 			
Action level exceedance for two or more consecutive samples	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	failure in writing;2. Notify Contractor;3. Ensure remedial measures properly implemented.	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 			

Frank	Action						
Event	ET	IEC	ER	Contractor			
Limit level exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	failure in writing;2. Notify Contractor;3. Ensure remedial measures properly implemented.	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 			
Limit level exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. 			