

ANNEX E AIR QUALITY

CALIBRATION CERTIFICATES FOR AIR QUALITY

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT : MR MAGNUM FAN WORK ORDER : HK2502558

CLIENT : ENVIROTECH SERVICES CO.

ADDRESS : RM 712, 7/F, MY LOFT 9 HOI WING ROAD, SUB-BATCH : 1

TUEN MUN, N.T. HK

DATE RECEIVED : 15-JAN-2025

DATE OF ISSUE : 21-JAN-2025

PROJECT : ---- NO. OF SAMPLES : 1

CLIENT ORDER :--

General Comments

• Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified. The result(s) is/are related only to the
item(s) tested.

Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition.

Calibration was subcontracted to Envirotech Services Company.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories Position

Richard Fung

Managing Director

: HK2502558 WORK ORDER

SUB-BATCH

: 1 : ENVIROTECH SERVICES CO. CLIENT

PROJECT

ALS Lab	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK2502558-001	Sibata LD-3B (456666)	Equipments	02-Jan-2025	S/N: 456666

----- END OF REPORT -----

 $\mathsf{Page}: 2 \ \mathsf{of} \ 2$

Envirotech Services Co.

Rm. 712, 7/F My Loft, 9 Hoi Wing Roed, Tuen Mun, H.K. Tel: 2560 8450 Fax: 2560 6553

E-mail; envirotech@netvigator.com

Equipment Verification Report (TSP)

Equipment Calibrated:

Type:

Laser Dust Monitor

Manufacturer:

Sibata LD-3B

Serial No.:

456666

Equipment Ref.:

N/A

ALS Job Order:

HK2500343

Standard Equipment

Standard Equipment:

High Volume Sampler (TSP)

Location:

Envirotech Room (Calibration Room)

Equipment Ref.:

HVS 8162

Last Calibration Date:

1-Jan-2025

Equipment Verification Results:

Verification Date:

2-Jan-2025

Hour	Time	Mean Mean Temp °C Pressure		TSP Level in mg (Standard Equipment)	Total Count (Calibrated Equipment)	
			(hpa)	(Y-Axis)	(X-Axis)	
1hr 00mins	0900-1000	16.1	1023	0.096	giaeb ta notista 76 holinom quite?	
2hr 00mins	1005-1205	20.5	1022	0.147	160	
3hr 00mins	1330-1630	21.0	1022	0.268	248	

Linear Regression of Y or X

Slope (K-factor):

0.0011(mg)/Count

Correlation Coefficient (R):

0.9936

Date of Issue:

15-Jan-2025

Remarks:

- 1. Strong Correlation (>0.8)
- 2. Factor 0.0011 mg/Count should be applied for TSP monitoring

Operator:

P.F.Yeung

Signature

Val

Date: 15 Jan 2025

QC Reviewer:

K.F.Ho

Signature

at the

Date: 15 Jan 2025

^{*}If R<0.5, repair or verification is required for the equipment

TSP SAMPLER CALIBRATION CACULATION SPREADSHEET

HVS ID:	Rm. 712, M		oft, Tuen M	un			Date of Calib	Websited Commence of the Comme
Name and	8162 Model - TIS		ITYC Mada	.1 (7) 72 (4)	170		Next Calibra	
ivame and	iviodel: 113	SCH	HVS Mode	-		ONTO	Operator:	K.F.Ho
ann ei Malantina (ara i Gen - M elata na				CON	DITI	ONS		ganetiness is incommensured
# [6] 3033 (327)	Sea Level P Temperature		,	1,011	1023 15.8	1	Corrected Pro	essure (mm Hg) 767.3 (K) 288.8
		Mingrouse Systematics		CAL	IBRA	TION (ORIFICE	a foresteen this named continue of
			Make: Model: Serial#:	TE-50	SCH 025A 2454	. ef	Qstd Slope Qstd Intercep	2.08315 -0.04938
· can l			notale	CAL	BRA	TION	Lore argains	il becommen to assets which was an a
Plate	H2O(L) H20	0(R)	H2O	Qs	td	Ι	IC	LINEAR
No.		n)	(in)	(m3/	1	(chart)	(corrected)	REGRESSION
18	6.4 6	.4	12.8	1.7	77	62	63.30	Slope= 35.208
13	5.3 5	.3	10.6	1.6	19	56	57.17	Intercept= -0.0015
10	4.2 4	.2	8.4	1.4	44	48	49.00	Corr. Coeff.= 0.9959
7	2.7 2	.7	5.4	1.1	63	41	41.86	puninuo Inelaviupa bampiaesii, priba
5	1.7 1	.7	3.4	0.9	27	32	32.67	et of Leaf Seeman, Life subsequent and Luc
Calulations:	d language					. 081	<u>has annisae</u> on sac ant-2 for	t percenting of the end of an engine of the engine of the end of t
		0-4-1\C	P-4-1/7P-\\ 1-7		IC 70			Flow Rate
	[Sqrt(H2O(Pa/P Pa/Pstd)(Tstd/T		isid/ia/)-bj			E	outes especialists. Outes especialists	nen aussan seun punimette asvi sem hallimbl smes sette 1970 - De
C - I[Sqrt(1 4/1 514)(1514/1	(a)]			65			op Construction and the construction of the co
Ostd = stanc	dard flow rate				60			Service and surplement and the service
	ed chart respon	ise			55	-		
	nart response					F		2001.20051.201
	tor Qstd slope				50	E	Locations and	hotungiest la notate privourum qui
c = calibrator Qstd intercept					45	-	to constituent to	minimum of a sound could be south
= calibrat	temperature dui	ring c	alibration (d	eg K)	40	-	cied Carbonac	A A-de la
	7	Pa = actual pressure during calibration (mm Hg)				- 101		(P) including the monitoring at the that
$\Gamma a = actual$		Cano		For subsequent calculation of sampler flow:				
Γa = actual 1 Pa = actual 1	pressure during		mnler flow		30	F		26 - 1000 C - 2 400 •
Ta = actual t Pa = actual t For subsequ	pressure during ent calculation	of sa				E		- 0025 - 2000 - 2000 •
Ta = actual t Pa = actual t For subsequ	pressure during	of sa			25		bus subdepole	ring 1900 - 2000 - up monitoring station at designalistic
Ta = actual t Pa = actual t For subsequ	pressure during ent calculation (298/Tav)(Pav/	of sa			25 20	100	Ageabana and sach 6-dov roll a ourourst ston	ring 1900 - 2000 - Lug montaring station wildesignalistic relact cince per montained station but rind with impact dust molisticing of the
Ta = actual p Pa = actual p For subseque I/m((I)[Sqrte m = sample	pressure during ent calculation (298/Tav)(Pav/	of sa			25	100	- (ccapara and each 6-day mil concerns stan capara elicens	nos 1900 - 2000 - tus monitorinos estaton en designatas nellos para para estaton em notario en designata en designata de

Tav = daily average temperature

Pav = daily average pressure

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Qstd(m3/min)

RECALIBRATION DUE DATE:

December 2, 2025

Certificate of Calibration

Calibration Certification Information

Cal. Date:

December 2, 2024

Rootsmeter S/N: 438320

Ta: 293
Pa: 757.4

°K

Operator: Jim Tisch

mm Hg

Calibration Model #:

TE-5025A

Calibrator S/N: 2454

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4200	3.2	2.00
2	3	4	1	1.0170	6.4	4.00
3	5	6	1	0.9090	7.9	5.00
4	7	8	1	0.8700	8.8	5.50
5	9	10	1	0.7140	12.8	8.00

	Data Tabulation							
Vstd	Qstd $\sqrt{\Delta H(\frac{Pa}{Pstd})(\frac{Tstd}{Ta})}$			Qa	√∆H(Ta/Pa)			
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)			
1.0093	0.7108	1.4238	0.9958	0.7013	0.8796			
1.0051	0.9883	2.0136	0.9916	0.9750				
1.0031	1.1035	2.2512	0.9896	1.0886	1.3907			
1.0018	1.1515	2.3611	0.9884	1.1361	1.4586			
0.9965	1.3956	2.8476	0.9831	1.3769				
	m=	2.08315		m=	1.30443			
QSTD	b=	-0.04938	QA	b=	-0.03050			
2010	r=	0.99985		r=	0.99985			

	Calculatio	ns	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd= Vstd/ΔTime		Qa= Va/ΔTime	
	For subsequent flow ra	te calculatio	ns:
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrate	r manometer reading (in H2O)
ΔP: rootsme	ter manometer reading (mm Hg)
Ta: actual ab	solute temperature (°K)
Pa: actual ba	rometric pressure (mm Hg)
b: intercept	
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.com

TOLL FREE: (877)263-7610 FAX: (513)467-9009

MONITORING SCHEDULE FOR AIR QUALITY

Tung Chung New Town Extension (East) Air Quality Monitoring Schedule (June 2025)

			nomicorning ochicat			
	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Jun	2-Jun	3-Jun	4-Jun	5-Jun	6-Jun	7-Jun
	Air Quality Monitoring					Air Quality Monitoring
8-Jun	9-Jun	10-Jun	11-Jun	12-Jun	13-Jun	14-Jun
O-Suri	9-sun	10-3411	11-3011	12- 3 011	Air Quality Monitoring	14-3011
15-Jun	16-Jun	17-Jun	18-Jun	19-Jun	20-Jun	21-Jun
				Air Quality Monitoring		
22-Jun	23-Jun	24-Jun	25-Jun	26-Jun	27-Jun	28-Jun
			Air Quality Monitoring			
29-Jun	30-Jun					
	Air Quality Monitoring					

MONITORING RESULTS FOR AIR QUALITY

Table E3 Data for 1-hr TSP Monitoring at Station DM-1

Date	Start Time	Finish Time	Weather	1-hour TSP (μg/m³)
6/2/2025	9:02	10:02	Cloudy	35
6/2/2025	10:02	11:02	Cloudy	31
6/2/2025	11:02	12:02	Cloudy	34
6/7/2025	9:12	10:12	Sunny	40
6/7/2025	10:12	11:12	Sunny	44
6/7/2025	11:12	12:12	Sunny	43
6/13/2025	9:00	10:00	Cloudy	41
6/13/2025	10:00	11:00	Cloudy	46
6/13/2025	11:00	12:00	Cloudy	45
6/19/2025	13:50	14:50	Sunny	43
6/19/2025	14:50	15:50	Sunny	39
6/19/2025	15:50	16:50	Sunny	42
6/25/2025	9:00	10:00	Sunny	39
6/25/2025	10:00	11:00	Sunny	38
6/25/2025	11:00	12:00	Sunny	36
6/30/2025	9:02	10:02	Cloudy	36
6/30/2025	10:02	11:02	Cloudy	40
6/30/2025	11:02	12:02	Cloudy	37

Figure E3 Graphical Presentation for 1-hr TSP Monitoring at Station DM-1

EVENT AND ACTION PLAN FOR AIR QUALITY

Annex E4 Event and Action Plan for Air Quality

Event	Action						
Event	ET	IEC	ER	Contractor			
Action level exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate. 			
Action level exceedance for two or more consecutive samples	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	failure in writing;2. Notify Contractor;3. Ensure remedial measures properly implemented.	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 			

Frank	Action							
Event	ET	IEC	ER	Contractor				
Limit level exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	failure in writing;Notify Contractor;Ensure remedial measures properly implemented.	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 				
Limit level exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. 				