

ANNEX E AIR QUALITY

ANNEX E1 CALIBRATION CERTIFICATES FOR AIR QUALITY

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT	: MR MAGNUM FAN	W25K40000
CLIENT	ENVIROTECH SERVICES CO.	WORK ORDER HK2419606
ADDRESS	: RM 712, 7/F, MY LOFT 9 HOI WING ROAD, TUEN MUN, N.T. HK	SUB-BATCH : 1 DATE RECEIVED : 20-MAY-2024 DATE OF ISSUE : 24-MAY-2024
PROJECT		NO. OF SAMPLES : 1 CLIENT ORDER

General Comments

- Sample Information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.
- Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified. The result(s) is/are related only to the item(s) tested.
- Calibration was subcontracted to Envirotech Services Company.
- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Richard Fung	Managing Director	
K. Land Jong .		
Signatories	Position	
		and a second sec

This report supersedes any previous report(s) with the same work order number.

All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tet. +852 2610 1044 Fax +852 2610 2021 www.alsglobal.com WORK ORDER SUB-BATCH

CLIENT

: HK2419606

: 1 ENVIROTECH SERVICES CO.

Sibata LD-3B (436560)

PROJECT : ALS Lab Client's Sample ID Sample Sample Date External Lab Report No. ID Туре HK2419606-001

Equipments 11-May-2024 S/N: 436560 ----- END OF REPORT

Envirotech Services Co.

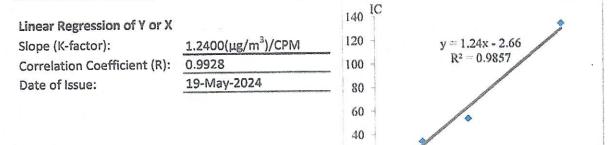
Rm. 712, 7/F Mv Left, 9 Noi Wing Road. Tuen Mun, H.K. Tol : 2560 8450 Fax : 2560 8459 Fax : 2560 8653 Fax : 2560 sources

Equipment Verification Report (TSP)

Equipment Calibrated:

Type:	Laser Dust Monitor
Manufacturer:	Sibata LD-3B
Serial No.:	436560
Equipment Ref.:	N/A
ALS Job Order:	HK2418944

Standard Equipment


Standard Equipment:	High Volume Sampler (TSP)
Location :	Envirotech Room (Calibration Room)
Equipment Ref.:	HVS 8162
Last Calibration Date:	25-Mar-2024
Last Calibration Date:	25-Mar-2024

Equipment Verification Results:

Verification Date:

11-May-2024

Hour	Time	Mean Temp ^e C	Mean Pressure (hpa)	Concentration in µg/m ³ (Standard Equipment) (Y-Axis)	Concentration in µg/m ³ (Calibrated Equipment) (X-Axis)
1hr 00mins	0830-0930	26.8	1015	34	27
2hr 00mins	0935-1135	28.5	1015	53	53
3hr 00mins	1310-1610	29.5	1016	133	106

20 0

0

20

40

60 80 Qstd(m3/min) 100

120

Remarks:

1. Strong Correlation (>0.8)

2. Factor 1.2400(ug/m³)/CPM should be applied for TSP monitoring

*If R<0.5, repair or verification is required for the equipment

Operator:	P.F.Yeung	Signature	Fai	Date:	19 May 2024
QC Reviewer:	K.F.Ho	Signature	ab	Date:	19 May 2024

TSP SAMPLER CALIBRATION CACULATION SPREADSHEET

HVS ID:		oft, Tuen N HVS Mod	el TE-517(and the party of t	Date of Cal Next Calibi Operator:	ere erste det		
		vel Press rature (°C	ure (hpa)])	CONDIT	6	Corrected P Temperature	ressure (mm Hg) 762.1	
			dan ginnen dina di kata ji gin gri provinsi dan ga	CALIBR	ATION	ORIFICE		THE REPORT OF COMPANY
			Make: Model: Serial#:	TISCI TE-50254 2454	Z	Qstd Slope Qstd Interce	2.07544 -0.03205	
	and the second secon		27-28-49-49-49-49-49-49-49-49-49-49-49-49-49-	CALIBR	ATION	andronani (1997) - 000 (1997) -		
Plate No. 18 13 10	H2O(L) (in) 6.7 5.5 4.3	H20(R) (in) 6.8 5.6 4.5	H2O (in) 13.5 11.1 8.8	Qstd (m3/min) 1.790 1.625 1.448	I (chart) 60 55 49	IC (corrected) 60.15 55.13 49.12	LINEAR REGRESSION Slope= 30.471 Intercept= 5.514	
7 5	2.5 1.5	2.7 1.7	5.2 3.2	1.117 0.879	40 32	40.10 32.08	Corr. Coeff.= 0.9994	
a = actual pr or subseque m((I)[Sqrt(2	Sqrt(H2O() Pa/Pstd)(Ts ard flow ra ed chart res art respons or Qstd slo r Qstd slo r Qstd inte emperature ressure dur nt calculat 298/Tav)(P	td/Ta)] tte pponse e ppe trcept during ca ing calibration ion of sam	libration (de ation (mm H apler flow:	IC 65 60 55 50 45 40 35 30 25 20			Flow Rate	
 a = sampler slope = sampler intercept = chart response av = daily average temperature av = daily average pressure 					7 0.8 (D.9 1.0 1.1	1.2 1.3 1.4 1.5 1.6 1.7 1.8 1 Qstd(m3/min)	.9

nvir				7			D	ALIBRATION UE DATE: hber 15, 2024
	Ce	rtifa	cate	2	Cal	ibra	tion	
			Calibration	Certificatio	on Informat	ion		
Cal. Date:	December	15. 2023	Roots	meter S/N:	438320	Ta:	295	°K
Operator:	Jim Tisch					Pa	748.5	mm Hg
		TE 50054	c 11		2454		110.0	
Calibration	Model #:	TE-5025A	Calit	prator S/N:	2454			
		Vol. Init	Vol. Final	ΔVol.	∆Time	ΔΡ	ΔΗ]
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	(115)	2	1	1.4250	3.2	2.00	4
	2	3	4	1	1.0090	6.4	4.00	1
	3	5	4	1	0.9040	7.9	5.00	4
	4	7	8		0.8610	8.8	5.50	-
	5	9	10	1	0.7110	12.8	8.00	-
	است		line geographic second s					1
			Γ	Data Tabula	tion			
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(Tstd) Ta)		Qa	√∆Н(Та/Ра)	
	(m3)	(x-axis)	(y-ax	- 1-1-1-1 - 1-1-1-1-1-1-1-1-1-1-1-1-1-1	Va	(x-axis)	(y-axis)	
	0.9907	0.6952	1.410		0.9957	0.6988	0.8878	
	0.9864	0.9776	1.994		0.9914	0.9826	1.2556	-
	0.9844	1.0890	2.230	04	0.9894	1.0945	1.4037	
	0.9832	1.1420	2.33	93	0.9882	1.1478	1.4723	1
	0.9779	1.3754	2.82	13	0.9829	1.3824	1.7756	
		m=	2.075	544		m=	1.29961	5
	QSTD	b=	-0.032	205	QA	b=	-0.02017	
		r=	0.999	99		r=	0.99999	-di
				Calculatio	nc			1
	Vstd=	AV/ol((Pa-AP)	/Pstd)(Tstd/Ta			ΛVol((Pa-ΔF	P)/Pa)	
		Vstd/ATime	/1300/1300/13		Va= ΔVol((Pa-ΔP)/Pa) Qa= Va/ΔTime			
	4514	1010/21110	For subsequ	ent flow ra	te calculation		and and the second s	
	Qstd=	1/m((__AH(Pa V Tetel	-))-b)		1/m ((√ΔH	(Ta/Pa))-b)	
		((*		///		<u> </u>		1
Tatal		Conditions		×.		DECA	IBRATION	
Tstd: Pstd:	298.15	<u>°K</u> mm Hg				RECA		
F5.0.		Key			US EPA reco	ommends ai	nnual recalibration	on per 1998
ΔH: calibrat		ter reading (i	n H2O)		40 Code	of Federal F	Regulations Part	50 to 51,
ΔP: rootsme	ter manom	eter reading	(mm Hg)		Appendix l	B to Part 50	Reference Meth	hod for the
Ta: actual a	osolute tem	perature (°K)		3	Determinat	tion of Susp	ended Particulat	e Matter in
	arometric p	ressure (mm	Hg)		th	e Atmosphe	re, 9.2.17, page	30
b: intercept								I
m: slope								

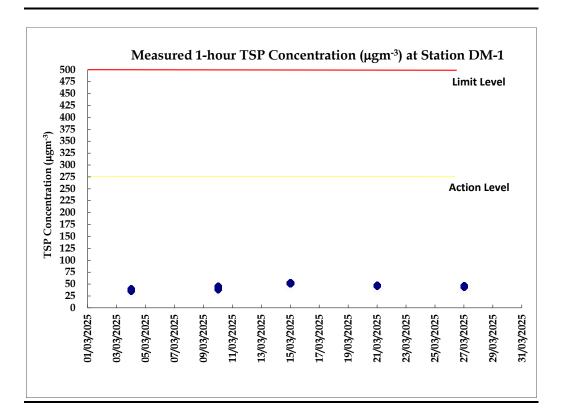
Tisch Environmental, Inc. 145 South Miami Avenue

Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

ANNEX E2 MONITORING SCHEDULE FOR AIR QUALITY

Tung Chung New Town Extension (East) Air Quality Monitoring Schedule (March 2025)


Sunday	Monday	Tuesdav	Wednesdav	Thursday	Friday	Saturday			
						1-Mar			
			- 14		- • •				
2-Mar	3-Mar	4-Mar	5-Mar	6-Mar	7-Mar	8-Mar			
		Air Ovelity Menitering							
		Air Quality Monitoring							
9-Mar	10-Mar	11-Mar	12-Mar	13-Mar	14-Mar	15-Mar			
<u>9-1viai</u>	10-Mai				14-10181	13-Wai			
	Air Quality Monitoring					Air Quality Monitoring			
	An adding monitoring					An equality monitoring			
16-Mar	17-Mar	18-Mar	19-Mar	20-Mar	21-Mar	22-Mar			
				20					
					Air Quality Monitoring				
					, ,				
23-Mar	24-Mar	25-Mar	26-Mar	27-Mar	28-Mar	29-Mar			
				Air Quality Monitoring					
30-Mar	31-Mar								

ANNEX E3 MONITORING RESULTS FOR AIR QUALITY

Date	Start Time	Finish Time	Weather	1-hour TSP (µg/m³)
3/4/2025	13:03	14:03	Cloudy	36
3/4/2025	14:03	15:03	Cloudy	40
3/4/2025	15:03	16:03	Cloudy	38
3/10/2025	9:01	10:01	Sunny	46
3/10/2025	10:01	11:01	Sunny	42
3/10/2025	11:01	12:01	Sunny	39
3/15/2025	13:02	14:02	Cloudy	51
3/15/2025	14:02	15:02	Cloudy	53
3/15/2025	15:02	16:02	Cloudy	52
3/21/2025	9:03	10:03	Sunny	47
3/21/2025	10:03	11:03	Sunny	46
3/21/2025	11:03	12:03	Sunny	48
3/27/2025	13:01	14:01	Sunny	45
3/27/2025	14:01	15:01	Sunny	44
3/27/2025	15:01	16:01	Sunny	47

Table E3Data for 1-hr TSP Monitoring at Station DM-1

ANNEX E4 EVENT AND ACTION PLAN FOR AIR QUALITY

Event	Action							
Event	ET	IEC	ER	Contractor				
Action level exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate. 				
Action level exceedance for two or more consecutive samples	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	failure in writing;2. Notify Contractor;3. Ensure remedial measures properly implemented.	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 				

Annex E4 Event and Action Plan for Air Quality

Francis	Action						
Event	ET	IEC	ER	Contractor			
Limit level exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 			
Limit level exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. 			