

ANNEX E AIR QUALITY

CALIBRATION CERTIFICATES FOR AIR QUALITY

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

SUB-CONTRACTING REPORT

CONTACT

: MR MAGNUM FAN

WORK ORDER

SUB-BATCH

HK2312356

CLIENT

: ENVIROTECH SERVICES CO.

TUEN MUN, N.T., HK

ADDRESS

: 1

RM 712, 7/F, MY LOFT 9 HOI WING ROAD,

DATE RECEIVED : 31-MAR-2023

DATE OF ISSUE : 11-APR-2023

PROJECT

NO. OF SAMPLES : 1

CLIENT ORDER

General Comments

- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in amblent condition. The result(s) related only to the
- Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.
- Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified.
- Calibration was subcontracted to and analysed by Envirotech Services Company

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories

Position

Richard Fung

Managing Director

WORK ORDER SUB-BATCH

: HK2312356

CLIENT

: ENVIROTECH SERVICES CO.

Envirotech Services Co.

Rm. 712, 7/F KM. 712, 7/F My Loft, 9 Hoi Wing Road, Tuen Mun, H.K. Tel: 2580 8450 Fax: 2580 6553 E-mail: envirotech®

Equipment Verification Report (TSP)

Equi	pment	Calib	rated:

Type:

Laser Dust Monitor

Manufacturer:

Sibata LD-3B

Serial No.:

6Z7784

Equipment Ref.:

N/A

Job Order:

HK2311344

Standard Equipment

Standard Equipment:

High Volume Sampler (TSP)

Location & Location ID:

Envirotech Room (Calibration Room)

Equipment Ref.:

HVS 8162

Last Calibration Date:

28-Feb-2023

Equipment Verification Results:

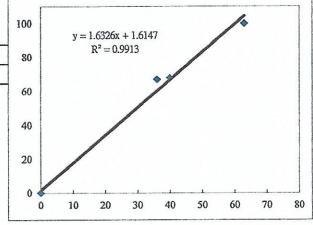
Verification Date:

17 & 18 March 2023

Hour	Time	Mean Temp °C	Mean Pressure (hpa)	Concentration in µg/m³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count /Minute (Total Count/min)
1hr 00mins	1410-1510	24.2	1018.2	100	3780	63
1hr 00mins	0810-0910	22.2	1021.5	67	2162	36
1hr 00mins	1510-1610	25.0	1022.4	68	2405	40

Linear Regression of Y or X

Slope (K-factor):


1.6326(µg/m³)/CPM

Correlation Coefficient (R):

0.9956

Date of Issue:

29-Mar-2023

Remarks:

1. Strong Correlation (>0.8)

2. Factor 1.6326 (µg/m³)/CPM should be applied for TSP monitoring

Operator:

Signature P.F.Yeung

Date: 29 March 2023

QC Reviewer:

K.F.Ho

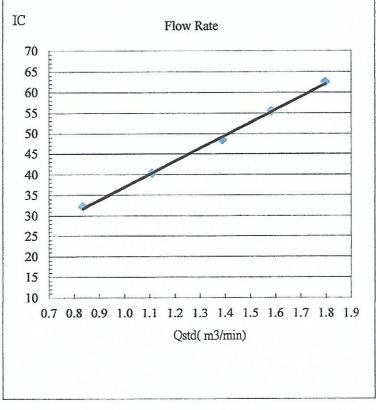
Signature

Date: 29 March 2023

^{*}If R<0.5, repair or verification is required for the equipment

TSP SAMPLER CALIBRATION CACULATION SPREADSHEET

HVS ID: Name and	cation: Rm. 712, My Loft, Tuen Mun VS ID: 8162						Date of Calib		28-Feb-23
Name and					450		Next Calibrat	ion Date:	28-Apr-23
, total o	Model:	TISCH	HVS Mode			NTO.	Operator:		K.F.Ho
				CON	DITIO	INS			
	Sea Leve	el Pressi	ire (hpa)		1021		Corrected Pre	essure (mm Hg)	764.3
	Temperature (°C)				22.0		Temperature		295
				L					
			30.00	CALI	BRA7	TION C	RIFICE		
			Make:	m	SCH		Qstd Slope		2.06918
Model: TE-5						Qstd Intercep	t 🗀	-0.04220	
				2454			<u> </u>		
				CALI	BRAT	TION			
Plate	H2O(L)	H20(R)	H2O	Qs	td	I	IC	L	NEAR
No.	(in)	(in)	(in)	(m3/1	min)	(chart)	(corrected)	R	EGRESSION
18	6.7	6.6	13.3	1.7	97	62	62.51	Slope= 31	1.428
13	5.2	5.1	10.3	1.5	84	55	55.45	Intercept= 5.	569
10	4.0	3.9	7.9	1.3	90	48	48.39	Corr. Coeff.= 0.	9990
7	2.5	2.5	5.0	1.1	10	40	40.33		
5	1.4	1.4	2.8	0.8	36	32	32.26		*
Calulations:									
		Da/Detd\(Tstd/Ta))-b]		IC			Flow Rate	
Qstu — 1711t [C = I[Sqrt(13(0/14))-0]					riow Rate	
	1 44 314/(11	stur Tury			70	E			
Qstd = stand	dard flow r	ate			65	E			À
IC = correct					60	E			
f = actual ch		•			55	E		/	
m = calibrator Qstd slope				50	E				
b = calibrator Qstd intercept				45	E				
Ta = actual temperature during calibration (deg K)			leg K)	40	E				
Pa = actual pressure during calibration (mm Hg)					35	E			
nnestine	1 1 1	1770		Control of	30 25	E			
For subsequ	ent calcul	ation of s	ampler flow	•	20	E			
1/m(M)[Sart	(298/Tav)((Pav/760)]-b)		15	E			


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

RECALIBRATION **DUE DATE:**

December 15, 2023

Calibration Certification Information

Cal. Date: December 15, 2022 Rootsmeter 5/N: 438320

Ta: 295

Pa: 748.0

°K

mm Hg

Operator: Jim Tisch Calibration Model #:

TE-5025A

Calibrator S/N: 4064

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4430	3.2	2.00
2	3	4	1	1.0210	6.4	4.00
3	5	6	1	0.9170	7.9	5.00
4	7	8	1	0.8730	8.8	5.50
5	9	10	1	0.7210	12.8	8.00

	Data Tabulation						
Vstd	Qstd	$\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)		
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)		
0.9900	0.6861	1.4101	0.9957	0.6900	0.8881		
0.9858	0.9655	1.9943	0.9914	0.9711	1.2560		
0.9838	1.0728	2.2296	0.9894	1.0790	1.4042		
0.9826	1.1255	2.3385	0.9882	1.1320	1.4728		
0.9772	1.3554	2.8203	0.9829	1.3632	1.7762		
	m=	2.10977		m=	1.32110		
QSTD	b=	-0.03782	QA	b=	-0.02382		
	r=	0.99998	•	r=	0.99998		

	Calculation	าร	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd=	Vstd/ΔTime	Qa= Va/ΔTime	
	For subsequent flow rat	te calculatio	ns:
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrator	manometer reading (in H2O)
ΔP: rootsmete	er manometer reading (mm Hg)
Ta: actual abs	olute temperature (°K)
Pa: actual bar	ometric pressure (mm Hg)
b: intercept	
m: slope	

RECALIBRATION

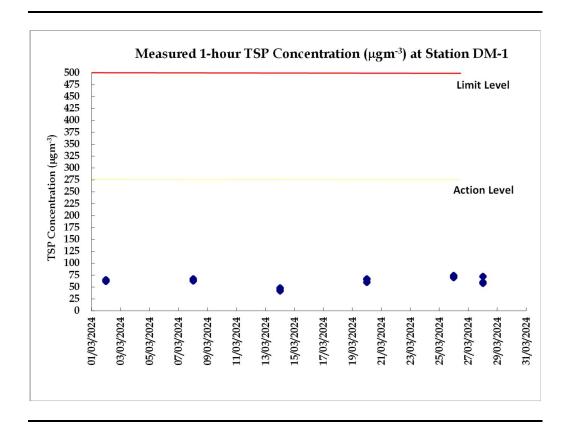
US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.con

TOLL FREE: (877)263-7610 FAX: (513)467-900

MONITORING SCHEDULE FOR AIR QUALITY

Tung Chung New Town Extension (East) Air Quality Monitoring Schedule (March 2024)


			ionitoring ooneau			
Sunday	Monday	Tuesday	Wednesday	Thursday		Saturday
					1-Mar	2-Mar
						Air Quality Monitoring
0.14	4.84	5 M	C M	7 14	0.14	0.14
3-Mai	4-Mar	5-Mar	6-Mar	7-Mar	8-Mar	9-Mar
					Air Quality Monitoring	
					All Quality Monitoring	
10-Mai	11-Mar	12-Mar	13-Mar	14-Mar	15-Mar	16-Mar
				Air Quality Monitoring		
47.84	40 Mari	40 M-	00 Mar	04.84==	00 Mar	00 M
17-Mai	18-Mar	19-Mar	20-Mar	21-Mar	22-Mar	23-Mar
			Air Quality Monitoring			
			An Quanty Monitoring			
24-Mai	25-Mar	26-Mar	27-Mar	28-Mar	29-Mar	30-Mar
		Air Quality Monitoring		Air Quality Monitoring		
04.84-						
31-Mai						
		·				

MONITORING RESULTS FOR AIR QUALITY

Table E3 Data for 1-hr TSP Monitoring at Station DM-1

Date	Start Time	Finish Time	Weather	1-hour TSP (μg/m³)
3/2/2024	13:01	14:01	Cloudy	62
3/2/2024	14:01	15:01	Cloudy	65
3/2/2024	15:01	16:01	Cloudy	64
3/8/2024	13:04	14:04	Sunny	63
3/8/2024	14:04	15:04	Sunny	66
3/8/2024	15:04	16:04	Sunny	67
3/14/2024	13:50	14:50	Sunny	42
3/14/2024	14:50	15:50	Sunny	45
3/14/2024	15:50	16:50	Sunny	48
3/20/2024	9:04	10:04	Sunny	60
3/20/2024	10:04	11:04	Sunny	67
3/20/2024	11:04	12:04	Sunny	66
3/26/2024	13:01	14:01	Sunny	73
3/26/2024	14:01	15:01	Sunny	74
3/26/2024	15:01	16:01	Sunny	70
3/28/2024	13:50	14:50	Cloudy	60
3/28/2024	14:50	15:50	Cloudy	56
3/28/2024	15:50	16:50	Cloudy	72

EVENT AND ACTION PLAN FOR AIR QUALITY

Annex E4 Event and Action Plan for Air Quality

Event		Action						
Event	ET	IEC	ER	Contractor				
Action level exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate. 				
Action level exceedance for two or more consecutive samples	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	failure in writing;2. Notify Contractor;3. Ensure remedial measures properly implemented.	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 				

Frank	Action							
Event	ET	IEC	ER	Contractor				
Limit level exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	failure in writing;Notify Contractor;Ensure remedial measures properly implemented.	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 				
Limit level exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. 				